Last night I got the FNN Classifier working on the 16-input 10-output data file for Project 3 in my Machine Learning class.
Here’s the output!
Importing training data... Training rows: 3000 Input dimensions: 16, output dimensions: 1 ('\nFirst sample: ', array([ 1. , 1. , 1. , 0. , 0. , 1. , 0. , 1. , 17. , 0. , 0.4516129, 0. , 0.7931035, 0.902439 , 0.8125 , 1.12037 ]), array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]), array([0])) Creating Neural Network: Network Structure: ('\nInput: ', <LinearLayer 'in'>) ('Hidden layer 1: ', <SigmoidLayer 'hidden0'>, ', Neurons: ', 13) ('Output: ', <SoftmaxLayer 'out'>) Training the neural network... train-errors: [ 0.038761 0.029293 0.024884 0.022043 0.020121 0.018677 0.017529 0.016579 0.015792 0.014626 0.013603 0.012940 0.012482 0.012046 0.011884 0.011578 0.011182 0.011038 0.010635 0.010769 0.010317 0.010112 0.010432 0.009864 0.009588 0.009404 0.009336 0.009192 0.009064 0.008943 0.008755 0.009031 0.008283 0.008543 0.008208 0.008102 0.007873 0.007997 0.007970 0.007687 0.007473 0.007419 0.007206 0.007246 0.007052 0.006973 0.007284 0.007343 0.006806 0.007144 0.006771 0.006940 0.006789 0.006612 0.007002 0.006759 0.006553 0.006608 0.006518 0.006929 0.006351 0.006677 0.006509 0.006343 0.006221 0.006090 0.006272 0.006752 0.006091 0.006285 0.006146 0.006198 0.006449 0.006274 0.006259 0.006845 0.006471 0.006018 0.005944 0.005972 0.006273 0.006480 0.005726 0.006301 0.006516 0.006499 0.006223 0.006136 0.005867 0.005885 0.005876 0.005842 0.006032 0.005826 0.005653 0.005705 0.006175 0.005797 0.005788 0.005845 0.005603 0.004935] valid-errors: [ 0.063600 0.032400 0.026321 0.023301 0.021404 0.020292 0.018790 0.017495 0.016995 0.015580 0.014692 0.013846 0.014473 0.012946 0.012400 0.013170 0.012202 0.011508 0.011371 0.011360 0.011115 0.010672 0.011536 0.010711 0.010432 0.011160 0.010278 0.010163 0.010221 0.010590 0.009836 0.009849 0.009846 0.010072 0.009938 0.009178 0.008529 0.010189 0.008046 0.008211 0.009385 0.008088 0.008553 0.009059 0.007765 0.008596 0.008465 0.009120 0.008196 0.009056 0.008426 0.007434 0.007872 0.008579 0.009457 0.008823 0.007650 0.007414 0.008214 0.007400 0.007275 0.007797 0.008120 0.007587 0.008690 0.008652 0.007537 0.008202 0.007392 0.008514 0.007407 0.007521 0.007788 0.007296 0.007375 0.007785 0.008493 0.009074 0.007640 0.007837 0.007370 0.009581 0.007429 0.007780 0.007485 0.008100 0.007646 0.008031 0.007486 0.009158 0.007781 0.007797 0.007320 0.007511 0.008301 0.008997 0.007239 0.007497 0.008476 0.007089 0.008157 0.006774] <FullConnection 'FullConnection-4': 'hidden0' -> 'out'> (0, 0) 1.97034676195 (1, 0) 0.205547544009 (2, 0) -1.39194384331 (3, 0) -1.19536809665 (4, 0) 0.532497209596 (5, 0) 3.78538106374 (6, 0) 2.96117412924 (7, 0) -3.78523581656 (8, 0) -2.33305927664 (9, 0) -0.107099673461 (10, 0) 1.05253692747 (11, 0) 1.16998764128 (12, 0) -1.6446456627 (0, 1) -3.78554660125 (1, 1) 0.110082157195 (2, 1) 2.00959920575 (3, 1) -1.4818647156 (4, 1) 0.47754811455 (5, 1) 0.586612033935 (6, 1) -3.33060359627 (7, 1) 3.47983943215 (8, 1) 0.68663692996 (9, 1) -1.33694729559 (10, 1) 1.41119329168 (11, 1) -0.808565967083 (12, 1) 2.36545357056 (0, 2) 2.0686653235 (1, 2) -0.928835048313 (2, 2) 1.83676782784 (3, 2) -1.76161763582 (4, 2) 0.9361187835 (5, 2) -5.18245128877 (6, 2) 0.716382960297 (7, 2) -3.60545617741 (8, 2) -0.402315012393 (9, 2) -1.58503008135 (10, 2) 2.83977738833 (11, 2) 0.785279233021 (12, 2) -1.18054754169 (0, 3) -0.203951751624 (1, 3) 0.322602700012 (2, 3) -0.135262966169 (3, 3) -1.41762708896 (4, 3) -4.84104938707 (5, 3) -1.25393926994 (6, 3) 2.17559963467 (7, 3) -2.09770282748 (8, 3) 0.616624009402 (9, 3) 2.02261312669 (10, 3) 2.50046686569 (11, 3) 1.21013636278 (12, 3) -2.02479566929 (0, 4) 0.262402966139 (1, 4) -0.2049562553 (2, 4) 1.46174549966 (3, 4) 5.80019891011 (4, 4) -0.977813743463 (5, 4) 0.866255330743 (6, 4) -0.623536140065 (7, 4) 2.31791322416 (8, 4) 2.45985579544 (9, 4) -0.773406462405 (10, 4) -3.01271325372 (11, 4) -0.394620653754 (12, 4) -2.51727744427 (0, 5) -1.84884535137 (1, 5) 4.12641600292 (2, 5) -1.71652533043 (3, 5) -0.0815174955082 (4, 5) -0.293698800606 (5, 5) 1.71536468963 (6, 5) -0.09204101225 (7, 5) -3.39683666138 (8, 5) 2.65257065343 (9, 5) 1.24530888054 (10, 5) -1.03146066497 (11, 5) -1.21429970585 (12, 5) 0.729863849101 (0, 6) 2.04586824381 (1, 6) 0.49739573113 (2, 6) 2.57776903746 (3, 6) -1.93553170732 (4, 6) 2.78487687106 (5, 6) 1.3000471899 (6, 6) -4.73027055616 (7, 6) -2.46351648945 (8, 6) -0.28859559781 (9, 6) -2.02233867248 (10, 6) -0.156622792383 (11, 6) 1.92189313946 (12, 6) -2.23854617011 (0, 7) -2.24824282938 (1, 7) -0.980973854304 (2, 7) -4.37502761199 (3, 7) -0.480980045708 (4, 7) 1.27159949426 (5, 7) -3.34473044103 (6, 7) 1.40822677342 (7, 7) 4.47168119792 (8, 7) 0.344224226657 (9, 7) -0.507463253978 (10, 7) 3.00263456183 (11, 7) 1.41026234082 (12, 7) -1.63287505494 (0, 8) 1.85402453493 (1, 8) -0.655788582737 (2, 8) -0.725833018627 (3, 8) -0.422927874452 (4, 8) 3.01031150439 (5, 8) -0.11160243227 (6, 8) -0.945132529229 (7, 8) -1.7545689227 (8, 8) -1.21431898252 (9, 8) 2.22819018763 (10, 8) 0.260729007609 (11, 8) -2.52922250574 (12, 8) -0.56668568841 (0, 9) 0.0364945847699 (1, 9) -0.237982860432 (2, 9) -2.62646677443 (3, 9) 1.0732844588 (4, 9) -0.259593431419 (5, 9) -0.848517900957 (6, 9) 2.508395978 (7, 9) 3.30027859271 (8, 9) 0.403155991036 (9, 9) 2.80187580798 (10, 9) 0.482560709585 (11, 9) -0.667975028034 (12, 9) 0.900458124988 <FullConnection 'FullConnection-5': 'in' -> 'hidden0'> (0, 0) 3.08811266325 (1, 0) -0.349496643363 (2, 0) 1.30386752112 (3, 0) -1.98774338878 (4, 0) -1.32967911522 (5, 0) 1.08797500734 (6, 0) -0.0471055794106 (7, 0) -0.869646403657 (8, 0) 1.75310037828 (9, 0) 1.68139639596 (10, 0) 0.338577992907 (11, 0) -0.893166683793 (12, 0) -0.221695458268 (13, 0) -0.973468822585 (14, 0) -2.35309393784 (15, 0) -0.215912101451 (0, 1) -4.17148121547 (1, 1) 2.51239249638 (2, 1) -2.3835748258 (3, 1) -0.921878525015 (4, 1) 0.00582746958346 (5, 1) -0.382111955259 (6, 1) 0.753175222035 (7, 1) 1.25959664026 (8, 1) -0.683135069059 (9, 1) -0.209658642682 (10, 1) 0.218220380222 (11, 1) -0.0446428066644 (12, 1) -0.0416074753453 (13, 1) -0.91371785665 (14, 1) -0.632054483002 (15, 1) 1.57790399324 (0, 2) 3.62327710485 (1, 2) -3.27317649121 (2, 2) -0.839175648632 (3, 2) 0.412688954247 (4, 2) 2.44336416739 (5, 2) 1.21796013909 (6, 2) 3.1687123603 (7, 2) 0.948876278654 (8, 2) -0.286973680858 (9, 2) -1.9075156445 (10, 2) -1.14925901374 (11, 2) -0.0210168332583 (12, 2) -0.0909940901091 (13, 2) -2.61880332586 (14, 2) -0.437724207854 (15, 2) 1.20185096351 (0, 3) -1.02510071023 (1, 3) -1.02697812149 (2, 3) -1.63897260494 (3, 3) 3.11149300751 (4, 3) -1.04298253508 (5, 3) 1.96548080077 (6, 3) -2.27063951013 (7, 3) 0.96011424472 (8, 3) 0.0164849529198 (9, 3) -0.253354500755 (10, 3) -2.28882965008 (11, 3) -0.283636888249 (12, 3) -1.99865996877 (13, 3) 1.52667642474 (14, 3) -0.0228903198235 (15, 3) 0.0135050503295 (0, 4) -2.14139223479 (1, 4) -2.8408497749 (2, 4) 3.81399104479 (3, 4) -0.78701132649 (4, 4) -0.374132352182 (5, 4) 3.42530995286 (6, 4) 1.50470862706 (7, 4) -2.47762421276 (8, 4) 0.0801124315649 (9, 4) 0.434755373038 (10, 4) 0.23075485372 (11, 4) -0.148280206643 (12, 4) -0.11787246006 (13, 4) -2.49254211376 (14, 4) 2.7868376411 (15, 4) 1.88035447247 (0, 5) -1.908159991 (1, 5) 2.49899998637 (2, 5) -1.08479709865 (3, 5) -1.72511473044 (4, 5) -0.0784510131126 (5, 5) 7.29314669597 (6, 5) -0.666501368053 (7, 5) -1.29706102811 (8, 5) 0.0189851100855 (9, 5) -0.223715798079 (10, 5) -2.41739360792 (11, 5) -0.0527543667725 (12, 5) 0.109401031538 (13, 5) -1.56917178955 (14, 5) 0.0805104258372 (15, 5) 0.30613454171 (0, 6) 2.62962191346 (1, 6) 1.34266245574 (2, 6) -0.771317442179 (3, 6) 0.62819877302 (4, 6) -2.82247489704 (5, 6) -2.95262009011 (6, 6) -5.50959305302 (7, 6) 1.67882086809 (8, 6) -0.333408442416 (9, 6) -0.913304409239 (10, 6) 2.98905196372 (11, 6) 0.313795875054 (12, 6) -0.00567451376859 (13, 6) 1.62495330416 (14, 6) 4.04612746336 (15, 6) -1.33966277129 (0, 7) -2.40332106939 (1, 7) -0.0593360522895 (2, 7) 1.0266713139 (3, 7) 3.72828340782 (4, 7) 0.567880231445 (5, 7) 2.26405855405 (6, 7) 0.623937810717 (7, 7) 2.37915819317 (8, 7) -0.350593882549 (9, 7) -0.365376231215 (10, 7) -1.55921618534 (11, 7) -0.0606258284081 (12, 7) -0.983993960405 (13, 7) 3.24283020884 (14, 7) -0.0432400659369 (15, 7) -0.24841004815 (0, 8) -0.846028901411 (1, 8) 0.847455813129 (2, 8) -0.732494219767 (3, 8) 1.78698830951 (4, 8) 0.17249944535 (5, 8) 2.27786894816 (6, 8) 0.305824302241 (7, 8) 0.0686883596353 (8, 8) -1.69256123821 (9, 8) -1.13151864412 (10, 8) -0.161439007288 (11, 8) -0.496294647267 (12, 8) 0.88658896292 (13, 8) 0.82311889859 (14, 8) -0.0159387072947 (15, 8) 1.05059670063 (0, 9) -2.09583095072 (1, 9) 2.03097846304 (2, 9) -0.0833679274323 (3, 9) 0.180664145308 (4, 9) 0.440281417341 (5, 9) -0.237458585441 (6, 9) -1.16755141597 (7, 9) 0.703220897806 (8, 9) -0.118174267571 (9, 9) 0.882455415318 (10, 9) -0.0798631547354 (11, 9) -1.47345000884 (12, 9) -0.0778357565249 (13, 9) 5.1079462407 (14, 9) 0.0525371824369 (15, 9) 0.890943522692 (0, 10) 1.33996802979 (1, 10) 0.243592407629 (2, 10) 0.614377187749 (3, 10) -0.936399048411 (4, 10) 1.13041169814 (5, 10) -1.37428656963 (6, 10) 0.201179795151 (7, 10) -0.868300167692 (8, 10) -1.84457820287 (9, 10) -0.30837289144 (10, 10) 2.7354007137 (11, 10) -2.27358274601 (12, 10) -0.821614421245 (13, 10) -1.19810713594 (14, 10) 0.644132922876 (15, 10) 0.321239012259 (0, 11) 0.146721838307 (1, 11) 0.489815857551 (2, 11) 0.748083219175 (3, 11) 0.478051079619 (4, 11) -1.58866610268 (5, 11) 0.0402712872795 (6, 11) -0.619479725339 (7, 11) 0.775680986208 (8, 11) 0.307966179582 (9, 11) -1.20772784082 (10, 11) 0.467378684214 (11, 11) 1.96027569901 (12, 11) 0.0434996345013 (13, 11) 1.56418855426 (14, 11) 0.674223610878 (15, 11) 1.33541420592 (0, 12) -4.54650372823 (1, 12) 1.30342906436 (2, 12) 1.0162017645 (3, 12) 0.72471737422 (4, 12) 1.97214207457 (5, 12) 0.983695853099 (6, 12) 0.0416932251127 (7, 12) -0.181585031908 (8, 12) 1.24151983563 (9, 12) -0.951221588685 (10, 12) -0.267891886636 (11, 12) 0.184735534108 (12, 12) 0.24326768398 (13, 12) 0.555359029071 (14, 12) -1.10511191191 (15, 12) 0.0484856134107 <FullConnection 'FullConnection-6': 'bias' -> 'out'> (0, 0) -3.06583223912 (0, 1) 0.635595485612 (0, 2) 2.00273694913 (0, 3) 1.89819252192 (0, 4) -0.406522712428 (0, 5) 0.454716069924 (0, 6) -1.08874951804 (0, 7) -0.625966887232 (0, 8) 0.828774790079 (0, 9) -2.57128990501 <FullConnection 'FullConnection-7': 'bias' -> 'hidden0'> (0, 0) 2.46456493275 (0, 1) 0.545072958929 (0, 2) 2.70738667062 (0, 3) 0.0387672728866 (0, 4) -0.936222642605 (0, 5) -0.286697637912 (0, 6) 1.1805752626 (0, 7) -0.279864607678 (0, 8) -0.513319583362 (0, 9) -1.58474299088 (0, 10) 0.423896814106 (0, 11) -0.972534066219 (0, 12) 0.306244079074 Training Epochs: 101 train error: 7.00% train class 1 samples: 300, error: 3.33% train class 2 samples: 300, error: 0.00% train class 3 samples: 300, error: 9.33% train class 4 samples: 300, error: 11.33% train class 5 samples: 300, error: 10.67% train class 6 samples: 300, error: 5.00% train class 7 samples: 300, error: 6.00% train class 8 samples: 300, error: 3.67% train class 9 samples: 300, error: 9.33% train class 10 samples: 300, error: 11.33% Press Enter to start testing... Importing testing data... Test rows: 3000 Input dimensions: 16, output dimensions: 1 ('\nFirst sample: ', array([ 1. , 1. , 0. , 0. , 0. , 1. , 0. , 1. , 16. , 0. , 1.032258 , 0. , 2.615385 , 0.9135135, 1.177778 , 0.893617 ]), array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]), array([0])) Testing... test error: 10.17% test class 1 samples: 300, error: 8.00% test class 2 samples: 300, error: 2.67% test class 3 samples: 300, error: 12.67% test class 4 samples: 300, error: 13.67% test class 5 samples: 300, error: 17.67% test class 6 samples: 300, error: 5.00% test class 7 samples: 300, error: 6.00% test class 8 samples: 300, error: 8.33% test class 9 samples: 300, error: 15.67% test class 10 samples: 300, error: 12.00%